

Q.PEAK DUO XL-G11.3 / BFG 570-580

BIFACIAL DOUBLE GLASS MODULE WITH EXCELLENT RELIABILITY AND ADDITIONAL YIELD

BIFACIAL ENERGY YIELD GAIN OF UP TO 20%

Bifacial Q.ANTUM solar cells make efficient use of light shining on the module rear-side for radically improved LCOE.

LOW ELECTRICITY GENERATION COSTS

Q.ANTUM DUO Z combines cutting edge cell separation and innovative wiring with Q.ANTUM Technology for higher yield per surface area, lower BOS costs, higher power classes, and an efficiency rate of up to 21.4%.

INNOVATIVE ALL-WEATHER TECHNOLOGY

Optimal yields, whatever the weather with excellent low-light and temperature behavior.

ENDURING HIGH PERFORMANCE

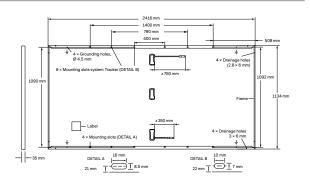
Long-term yield security with Anti LID, Hot-Spot Protect and Traceable Quality Tra.Q™.

FRAME FOR VERSATILE MOUNTING OPTIONS

High-tech aluminum alloy frame protects from damage, enables use of a wide range of mounting structures and is certified regarding IEC for high snow (5400 Pa) and wind loads (2400 Pa).

A RELIABLE INVESTMENT

Double glass module design enables extended lifetime with 12-year product warranty and improved 30-year performance warranty.


THE IDEAL SOLUTION FOR:

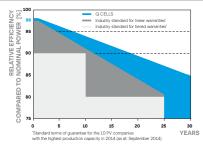
Ground-mounted solar power plants

¹ See data sheet on rear for further information

ELECTRICAL CHARACTERISTICS

WER CLASS			570		575		580			
MINIMUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC1 AND BSTC1 (POWER TOLERANCE +5 W / -0 W)										
				BSTC*		BSTC*		BSTC*		
Power at MPP¹	P _{MPP}	[W]	570	623.5	575	629.0	580	634.4		
Short Circuit Current ¹	I _{sc}	[A]	13.50	14.77	13.52	14.80	13.55	14.83		
Open Circuit Voltage ¹	V _{oc}	[V]	53.50	53.69	53.53	53.72	53.56	53.75		
Current at MPP	I _{MPP}	[A]	12.83	14.03	12.87	14.09	12.92	14.14		
Voltage at MPP	V_{MPP}	[V]	44.44	44.43	44.66	44.65	44.88	44.87		
Efficiency ¹	η	[%]	≥20.8	≥22.8	≥21.0	≥23.0	≥21.2	≥23.2		
	Power at MPP¹ Short Circuit Current¹ Open Circuit Voltage¹ Current at MPP Voltage at MPP	Power at MPP¹ P_{MPP} Short Circuit Current¹ I_{SC} Open Circuit Voltage¹ V_{OC} Current at MPP I_{MPP} Voltage at MPP I_{MPP}	Power at MPP¹ P_{MPP} [W] Short Circuit Current¹ I_{SC} [A] Open Circuit Voltage¹ V_{OC} [V] Current at MPP I_{MPP} [A] Voltage at MPP I_{MPP} [V]	Power at MPP ¹ P_{MPP} [W] 570 Short Circuit Current ¹ I_{SC} [A] 13.50 Open Circuit Voltage ¹ V_{OC} [V] 53.50 Current at MPP I_{MPP} [A] 12.83 Voltage at MPP I_{MPP} [V] 44.44	$\frac{\text{BSTC}^{+}}{\text{Power at MPP}^{1}} = \frac{\text{P}_{\text{MPP}}}{\text{I}_{\text{SC}}} = \frac{\text{[W]}}{\text{SO}} = \frac{570}{53.50} = \frac{623.5}{53.69}$ $\frac{\text{Pomer at MPP}^{1}}{\text{Open Circuit Voltage}^{1}} = \frac{\text{V}_{\text{OC}}}{\text{V}_{\text{C}}} = \frac{\text{[V]}}{\text{I}_{\text{MPP}}} = \frac{12.83}{14.03} = \frac{14.03}{14.03}$ $\frac{\text{Voltage at MPP}}{\text{Voltage at MPP}} = \frac{\text{V}_{\text{MPP}}}{\text{V}_{\text{MPP}}} = \frac{\text{[V]}}{\text{V}_{\text{I}}} = \frac{12.83}{44.44} = \frac{14.43}{44.43}$	NIMUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC 1 AND BSTC 1 (POWER TOLERANCE +5 W / -0 W)	NIMUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC 1 AND BSTC 1 (POWER TOLERANCE +5 W / -0 W) BSTC * BSTC * Power at MPP 1 P _{MPP} [W] 570 623.5 575 629.0 Short Circuit Current 1 I _{SC} [A] 13.50 14.77 13.52 14.80 Open Circuit Voltage 1 V _{OC} [V] 53.50 53.69 53.53 53.72 Current at MPP I _{MPP} [A] 12.83 14.03 12.87 14.09 Voltage at MPP V _{MPP} [V] 44.44 44.43 44.66 44.65	NIMUM PERFORMANCE AT STANDARD TEST CONDITIONS, STC 1 AND BSTC 1 (POWER TOLERANCE +5 W / -0 W) BSTC * BSTC * BSTC * Power at MPP 1 P _{MPP} [W] 570 623.5 575 629.0 580 Short Circuit Current 1 I _{SC} [A] 13.50 14.77 13.52 14.80 13.55 Open Circuit Voltage 1 V _{OC} [V] 53.50 53.69 53.53 53.72 53.56 Current at MPP I _{MPP} [A] 12.83 14.03 12.87 14.09 12.92 Voltage at MPP V _{MPP} [V] 44.44 44.43 44.66 44.65 44.88		

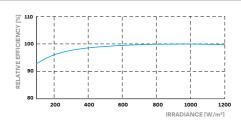
Bifaciality of P_{MPP} and I_{SC} 70% \pm 5% \star Bifaciality given for rear side irradiation on top of STC (front side) \star According to IEC 60904-1-2


 $^{1}\text{Measurement tolerances P}_{\text{MFP}} \pm 3\%; |_{\text{SC}}, \text{V}_{\text{OC}} \pm 5\% \text{ at STC}: 1000 \text{W/m}^{2}; \\ ^{4}\text{at BSTC}: 1000 \text{W/m}^{2} + \phi \times 135 \text{W/m}^{2}, \\ \phi = 70\% \pm 5\%, 25 \pm 2 ^{\circ}\text{C}, \\ \text{AM 1.5 according to IEC 60904-3 } = 100\% \pm 100\%$

MINIMUM PERFORMANCE AT NORMAL OPERATING CONDITIONS, NMOT2

Minimum	Power at MPP	P _{MPP}	[W]	429.1	432.9	436.6
	Short Circuit Current	I _{sc}	[A]	10.87	10.89	10.91
	Open Circuit Voltage	Voc	[V]	50.60	50.63	50.66
	Current at MPP	I _{MPP}	[A]	10.09	10.14	10.18
	Voltage at MPP	V _{MPP}	[V]	42.51	42.71	42.89

²800 W/m², NMOT, spectrum AM 1.5


Q CELLS PERFORMANCE WARRANTY

At least 98% of nominal power during first year. Thereafter max. 0.45% degradation per year. At least 94% of nominal power up to 10 years. At least 85% of nominal power up to 30 years.

All data within measurement tolerances. Full warranties in accordance with the warranty terms of the Q CELLS sales organisation of your respective country.

PERFORMANCE AT LOW IRRADIANCE

Typical module performance under low irradiance conditions in comparison to STC conditions (25°C, 1000 W/m2)

TEMPERATURE COEFFICIENTS							
Temperature Coefficient of I _{SC}	α	[%/K]	+0.04	Temperature Coefficient of Voc	β	[%/K]	-0.27
Temperature Coefficient of Pupp	v	[%/K]	-0.34	Nominal Module Operating Temperature	NMOT	l°C1	42+3

PROPERTIES FOR SYSTEM DESIGN

Maximum System Voltage	$V_{\scriptsize SYS}$	[V]	1500	PV module classification	Class II
Maximum Reverse Current	I _R	[A]	25	Fire Rating based on ANSI / UL 61730	C/TYPE 29 ³
Max. Design Load, Push/Pull		[Pa]	3600/1600	Permitted Module Temperature on Continuous Duty	-40°C - +85°C
Max Test Load Bush / Bull		[Da]	5400 / 2400	3 Now Typo is similar to Typo 3 but with motallic frama	

QUALIFICATIONS AND CERTIFICATES

PACKAGING INFORMATION

IEC 61215:2016 IEC 61730:2016. This data sheet complies with DIN EN 50380.

packaging

20 pallets

Note: Installation instructions must be followed. See the installation and operating manual or contact our technical service department for further information on approved installation and use of this product.

Made in China

Hanwha Q CELLS Australia Pty Ltd

Suite 1, Level 1, 15 Blue Street, North Sydney, NSW 2060, Australia | TEL +61 (0)2 9016 3033 | FAX +61 (0)2 9016 3032 | EMAIL q-cells-australia@q-cells.com | WEB www.q-cells.com/au

16 pallets 31 modules